If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x)^2+x^2=180
We move all terms to the left:
(5x)^2+x^2-(180)=0
We add all the numbers together, and all the variables
6x^2-180=0
a = 6; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·6·(-180)
Δ = 4320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4320}=\sqrt{144*30}=\sqrt{144}*\sqrt{30}=12\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{30}}{2*6}=\frac{0-12\sqrt{30}}{12} =-\frac{12\sqrt{30}}{12} =-\sqrt{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{30}}{2*6}=\frac{0+12\sqrt{30}}{12} =\frac{12\sqrt{30}}{12} =\sqrt{30} $
| 6(2r+7)-8=82 | | 8(3a-7)-4a-2=62 | | 2b-2(7b-7)=98 | | -(m/4)+(5m-5m)-1=1 | | 1/9-9y=-4 | | 2b-2(76-7)-8=82 | | (-28)+4a+20a+30=1 | | 4+5u=-21 | | 1/2(90-2x)=30 | | _(m/4)+(5m-5m)-1=1 | | 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999*999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 | | 4a+(-28)+20a+30=1 | | 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999*999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 | | 5(g+3)-7g+17=30 | | 9999999999999999999999999999999999999999999999999999999999999999*999999999999999999999999999999999999999999999=x | | -16+6x=-6(x+3) | | 0.165134532154*90.26541354653=x | | 6x-1=x+8 | | 16x+2=5x+35 | | -182=-2-6(2+4m | | 1350=(x-0.4x)-0.1(x-0.4x) | | -0.5(2x-4)=7 | | -155=-9r+7 | | 6+m/6=4 | | -30x+6=96 | | -9(5+x)=99 | | 31.09=6g+3.79 | | x/15+4=5 | | 16^1-3a=4^3 | | x/2+1.2=1.8 | | x/5+21=19 | | 37/6x-6=7/6x+5 |